Distributivgesetz – Matheretter https://www.matheretter.de/wiki/distributivgesetz
Wir sagen auch „Ausmultiplizieren“. Die Variable a wird auf b und c verteilt.
Beispiel: 4·(5 + 3) = 4·5 + 4·3 Wir sagen hierzu auch „Ausmultiplizieren“.
Wir sagen auch „Ausmultiplizieren“. Die Variable a wird auf b und c verteilt.
Beispiel: 4·(5 + 3) = 4·5 + 4·3 Wir sagen hierzu auch „Ausmultiplizieren“.
Einführung zu den Ungleichungen und zum Lösen von Ungleichungen.
Sagen wir ein Mensch ist 1,50 m und ein zweiter Mensch ist 1,80 m groß.
Was ist eine Quersumme?
849 → Quersumme: 8+4+9 = 21 Daher kann man statt „Quersumme“ auch „Ziffernsumme“ sagen
Einführung der Proportionalität. Eine Proportion beschreibt ein Verhältnis zwischen zwei Werten. Der Proportionalitätsfaktor ist z. B. Preis pro Menge.
Machen wir uns die Bedeutung von Proportionalität an einem Beispiel klar: Sagen
{1}{x^n} \to F_n=-\frac{f_{n-1}}{n-1} \) Genauso einfach lässt sich für n > 1 sagen
Einführung der natürlichen Zahlen. Mengenschreibweise bei Zahlenmengen.
Im Folgenden ein paar Beispiele bezüglich der Zahlenmengen: 1 ∈ ℕ → Wir sagen:
Genauso gut könnte man auch „Zehnerzahlen“ oder „Zehnersystem“ sagen.
Das Additionsverfahren ist eine Verfahren zum Lösen von linearen Gleichungssystemen.
erhalten also zwei Gleichungen mit: I. 3·x + 2 = 11 II. 5·x + 8 = 23 Jetzt sagen
Wenn wir jetzt sagen würden: \( \cot(x) = \frac{1}{\tan(x)} \) dann hieße das
„nicht definiert“ stoßen, können wir keinen Wert beim Graphen einzeichnen, wir sagen