Dein Suchergebnis zum Thema: man

Ein Divertor für Wendelstein 7-X

https://www.mpg.de/4699067/_plasmaphys3_?c=1070738&force_lang=de

In einer Fusionsanlage ist der Divertor die einzige Stelle, an der das heiße Plasma die Gefäßwand berührt. Für Wendelstein 7-X in Greifswald wurden hochwärmebeständige, gekühlte Divertorelemente entwickelt, die sehr hohe Standzeiten erreichen. In fusion devices the divertor is the only place in the plasma vessel that is touched by the hot plasma. For the Wendelstein 7-X research device at Greifswald divertor components were developed that can permanently withstand high heat loads.
Wie erzeugt man ein 100 Millionen Grad heißes Plasma?

Ultraschnelle Magnonen für Spintronik

https://www.mpg.de/6651105/mpi_mikrostrukturphysik_jb_2012?c=5732343

Magnonen sind Anregungen in einem magnetischen Festkörper, die sich wellenartig ausbreiten. Wie andere Wellen, können die Magnonen eventuell dazu genutzt werden, Informationen zu übertragen. Die Untersuchung von Wellenlänge, Frequenz und Lebensdauer von Magnonen in magnetischen Festkörpern, stellt ein wichtiges Forschungsgebiet dar. Am MPI für Mikrostrukturphysik werden dazu die Eigenschaften von Magnonen an ferromagnetischen Oberflächen, mithilfe der spinpolarisierten Elektronenspektroskopie, studiert.
Man kann ihn sich vereinfacht als eine Art Eigendrehung des Elektrons vorstellen.

Ultraschnelle Magnonen für Spintronik

https://www.mpg.de/6651105/mpi_mikrostrukturphysik_jb_2012

Magnonen sind Anregungen in einem magnetischen Festkörper, die sich wellenartig ausbreiten. Wie andere Wellen, können die Magnonen eventuell dazu genutzt werden, Informationen zu übertragen. Die Untersuchung von Wellenlänge, Frequenz und Lebensdauer von Magnonen in magnetischen Festkörpern, stellt ein wichtiges Forschungsgebiet dar. Am MPI für Mikrostrukturphysik werden dazu die Eigenschaften von Magnonen an ferromagnetischen Oberflächen, mithilfe der spinpolarisierten Elektronenspektroskopie, studiert.
Man kann ihn sich vereinfacht als eine Art Eigendrehung des Elektrons vorstellen.

Ultraschnelle Magnonen für Spintronik

https://www.mpg.de/6651105/mpi_mikrostrukturphysik_jb_2012?c=5732343&force_lang=de

Magnonen sind Anregungen in einem magnetischen Festkörper, die sich wellenartig ausbreiten. Wie andere Wellen, können die Magnonen eventuell dazu genutzt werden, Informationen zu übertragen. Die Untersuchung von Wellenlänge, Frequenz und Lebensdauer von Magnonen in magnetischen Festkörpern, stellt ein wichtiges Forschungsgebiet dar. Am MPI für Mikrostrukturphysik werden dazu die Eigenschaften von Magnonen an ferromagnetischen Oberflächen, mithilfe der spinpolarisierten Elektronenspektroskopie, studiert.
Man kann ihn sich vereinfacht als eine Art Eigendrehung des Elektrons vorstellen.

Wie Licht Materie verändert: über den Einfluss von Laserlicht und einzelnen Photonen

https://www.mpg.de/10845821/mpsd_jb_2016

Die Eigenschaften eines Materials, z.B. seine Leitfähigkeit, können durch Wechselwirkung mit Licht gezielt verändert werden. Dies kann mittels vieler Photonen in Form eines Laserstrahls geschehen, in manchen Fällen genügen aber bereits wenige Photonen. In der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie in Hamburg werden beide Extreme verwendet, um neuartige Zustände der Materie zu untersuchen: mit Lasern können bisher unbeobachtete Materiezustände theoretisch erzeugt werden und chemische Reaktionen lassen sich durch den Einfluss weniger Photonen verändern.
der Theorie-Abteilung am Max-Planck-Institut in Hamburg haben nun gezeigt, dass man

Wie Licht Materie verändert: über den Einfluss von Laserlicht und einzelnen Photonen

https://www.mpg.de/10845821/mpsd_jb_2016?c=10583665&force_lang=de

Die Eigenschaften eines Materials, z.B. seine Leitfähigkeit, können durch Wechselwirkung mit Licht gezielt verändert werden. Dies kann mittels vieler Photonen in Form eines Laserstrahls geschehen, in manchen Fällen genügen aber bereits wenige Photonen. In der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie in Hamburg werden beide Extreme verwendet, um neuartige Zustände der Materie zu untersuchen: mit Lasern können bisher unbeobachtete Materiezustände theoretisch erzeugt werden und chemische Reaktionen lassen sich durch den Einfluss weniger Photonen verändern.
der Theorie-Abteilung am Max-Planck-Institut in Hamburg haben nun gezeigt, dass man

Wie Licht Materie verändert: über den Einfluss von Laserlicht und einzelnen Photonen

https://www.mpg.de/10845821/mpsd_jb_2016?c=7067551

Die Eigenschaften eines Materials, z.B. seine Leitfähigkeit, können durch Wechselwirkung mit Licht gezielt verändert werden. Dies kann mittels vieler Photonen in Form eines Laserstrahls geschehen, in manchen Fällen genügen aber bereits wenige Photonen. In der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie in Hamburg werden beide Extreme verwendet, um neuartige Zustände der Materie zu untersuchen: mit Lasern können bisher unbeobachtete Materiezustände theoretisch erzeugt werden und chemische Reaktionen lassen sich durch den Einfluss weniger Photonen verändern.
der Theorie-Abteilung am Max-Planck-Institut in Hamburg haben nun gezeigt, dass man