Dein Suchergebnis zum Thema: elfen

Meintest du elsen?

MPI für Sonnensystemforschung | Max-Planck-Gesellschaft

https://www.mpg.de/151085/sonnensystemforschung?filter=jobs

Der Name beschreibt das Forschungsfeld präzise und selbsterklärend: Max-Planck-Institut für Sonnensystemforschung. Die kosmische Nachbarschaft der Erde also haben die Wissenschaftler in Katlenburg-Lindau im Fokus – die Sonne, die Planeten und ihre Monde sowie diverse kleine Körper. So blicken sie ins Herz des Sterns, von dem wir leben, untersuchen die Gashülle, das solare Magnetfeld oder die energiereichen Teilchen, die unsere Sonne in den Weltraum ausstößt. Die Oberflächen der Planeten und ihre unterschiedlichen „Sphären“ – Atmosphären, Ionosphären und Magnetosphären –, die Ringe und Trabanten sowie Kometen und Planetoiden sind weitere Themen für physikalische Modelle und numerische Simulationen. Und weil die Objekte nicht astronomisch weit entfernt sind, begeben sich die Max-Planck-Forscher gern auf Erkundungstour vor Ort – zwar nicht selbst, sondern mittels internationaler Raum- und Landesonden, für die sie Instrumente und Detektoren entwickeln und bauen.
Max-Planck-Institut für Sonnensystemforschung war für elf

MPI für Sonnensystemforschung | Max-Planck-Gesellschaft

https://www.mpg.de/151085/sonnensystemforschung?filter=mpi_news

Der Name beschreibt das Forschungsfeld präzise und selbsterklärend: Max-Planck-Institut für Sonnensystemforschung. Die kosmische Nachbarschaft der Erde also haben die Wissenschaftler in Katlenburg-Lindau im Fokus – die Sonne, die Planeten und ihre Monde sowie diverse kleine Körper. So blicken sie ins Herz des Sterns, von dem wir leben, untersuchen die Gashülle, das solare Magnetfeld oder die energiereichen Teilchen, die unsere Sonne in den Weltraum ausstößt. Die Oberflächen der Planeten und ihre unterschiedlichen „Sphären“ – Atmosphären, Ionosphären und Magnetosphären –, die Ringe und Trabanten sowie Kometen und Planetoiden sind weitere Themen für physikalische Modelle und numerische Simulationen. Und weil die Objekte nicht astronomisch weit entfernt sind, begeben sich die Max-Planck-Forscher gern auf Erkundungstour vor Ort – zwar nicht selbst, sondern mittels internationaler Raum- und Landesonden, für die sie Instrumente und Detektoren entwickeln und bauen.
Max-Planck-Institut für Sonnensystemforschung war für elf

MPI für Radioastronomie | Max-Planck-Gesellschaft

https://www.mpg.de/150325/radioastronomie?section=a-ap

Das Max-Planck-Institut für Radioastronomie in Bonn hat Spuren in der irdischen Landschaft hinterlassen: eine riesige weiße Schüssel, die sich bei Effelsberg in der Eifel in den Himmel erhebt – das 100-Meter-Teleskop. Wenn die Wissenschaftler dort oder an anderen Antennen weltweit nach den Sternen greifen, muss das Wetter nicht unbedingt klar sein, Radiostrahlen durchdringen auch Wolken. In diesem für das menschliche Auge unsichtbaren spektralen Band betrachten die Forscher junge stellare Objekte ebenso wie altersschwache Sterne, Moleküle im interstellaren Medium ebenso wie ferne Radiogalaxien, das Zentrum der Milchstraße oder Magnetfelder sowie Staub und Gas in kosmologischen Entfernungen. Und weil für all dies ein Teleskop allein oft nicht ausreicht, arbeiten die Bonner Radioastronomen mit der sogenannten Interferometrie, indem sie mehrere über den Globus verteilte Antennen zu einem „Riesenauge“ zusammenschalten.
Sagittarius A* und formieren sich zum Neustart mehr Elf

MPI für Radioastronomie | Max-Planck-Gesellschaft

https://www.mpg.de/150325/radioastronomie?filter=yearbook

Das Max-Planck-Institut für Radioastronomie in Bonn hat Spuren in der irdischen Landschaft hinterlassen: eine riesige weiße Schüssel, die sich bei Effelsberg in der Eifel in den Himmel erhebt – das 100-Meter-Teleskop. Wenn die Wissenschaftler dort oder an anderen Antennen weltweit nach den Sternen greifen, muss das Wetter nicht unbedingt klar sein, Radiostrahlen durchdringen auch Wolken. In diesem für das menschliche Auge unsichtbaren spektralen Band betrachten die Forscher junge stellare Objekte ebenso wie altersschwache Sterne, Moleküle im interstellaren Medium ebenso wie ferne Radiogalaxien, das Zentrum der Milchstraße oder Magnetfelder sowie Staub und Gas in kosmologischen Entfernungen. Und weil für all dies ein Teleskop allein oft nicht ausreicht, arbeiten die Bonner Radioastronomen mit der sogenannten Interferometrie, indem sie mehrere über den Globus verteilte Antennen zu einem „Riesenauge“ zusammenschalten.
Sagittarius A* und formieren sich zum Neustart mehr Elf

MPI für Radioastronomie | Max-Planck-Gesellschaft

https://www.mpg.de/150325/radioastronomie?filter=jobs

Das Max-Planck-Institut für Radioastronomie in Bonn hat Spuren in der irdischen Landschaft hinterlassen: eine riesige weiße Schüssel, die sich bei Effelsberg in der Eifel in den Himmel erhebt – das 100-Meter-Teleskop. Wenn die Wissenschaftler dort oder an anderen Antennen weltweit nach den Sternen greifen, muss das Wetter nicht unbedingt klar sein, Radiostrahlen durchdringen auch Wolken. In diesem für das menschliche Auge unsichtbaren spektralen Band betrachten die Forscher junge stellare Objekte ebenso wie altersschwache Sterne, Moleküle im interstellaren Medium ebenso wie ferne Radiogalaxien, das Zentrum der Milchstraße oder Magnetfelder sowie Staub und Gas in kosmologischen Entfernungen. Und weil für all dies ein Teleskop allein oft nicht ausreicht, arbeiten die Bonner Radioastronomen mit der sogenannten Interferometrie, indem sie mehrere über den Globus verteilte Antennen zu einem „Riesenauge“ zusammenschalten.
Sagittarius A* und formieren sich zum Neustart mehr Elf

MPI für Radioastronomie | Max-Planck-Gesellschaft

https://www.mpg.de/150325/radioastronomie?filter=media

Das Max-Planck-Institut für Radioastronomie in Bonn hat Spuren in der irdischen Landschaft hinterlassen: eine riesige weiße Schüssel, die sich bei Effelsberg in der Eifel in den Himmel erhebt – das 100-Meter-Teleskop. Wenn die Wissenschaftler dort oder an anderen Antennen weltweit nach den Sternen greifen, muss das Wetter nicht unbedingt klar sein, Radiostrahlen durchdringen auch Wolken. In diesem für das menschliche Auge unsichtbaren spektralen Band betrachten die Forscher junge stellare Objekte ebenso wie altersschwache Sterne, Moleküle im interstellaren Medium ebenso wie ferne Radiogalaxien, das Zentrum der Milchstraße oder Magnetfelder sowie Staub und Gas in kosmologischen Entfernungen. Und weil für all dies ein Teleskop allein oft nicht ausreicht, arbeiten die Bonner Radioastronomen mit der sogenannten Interferometrie, indem sie mehrere über den Globus verteilte Antennen zu einem „Riesenauge“ zusammenschalten.
Sagittarius A* und formieren sich zum Neustart mehr Elf

Svante Pääbo erhält den Japan-Preis 2020 | Max-Planck-Gesellschaft

https://www.mpg.de/14428978/svante-paeaebo-erhaelt-den-japan-preis-2020

Svante Pääbo, Direktor am Max-Planck-Institut für evolutionäre Anthropologie in Leipzig, gilt als Begründer der Paläogenetik, einer Forschungsdisziplin, die sich mit der Analyse genetischer Proben aus Fossilien und prähistorischen Funden befasst. Welche genetischen Veränderungen im Laufe der Evolutionsgeschichte den modernen Menschen ausmachen, erforscht Pääbo durch Vergleiche der DNA-Sequenzen von heute lebenden Menschen, Neandertalern und weiteren menschliche Vorfahren. Für seine wissenschaftliche Arbeit wird ihm nun der Japan-Preis verliehen, der mit 50 Millionen Yen (etwa 490.000 Euro) dotiert ist.
wissenschaftlichen Pressemitteilungen des letzten Jahres Elf