Dein Suchergebnis zum Thema: Beschleunigung

MPI für Radioastronomie

https://www.mpg.de/150325/radioastronomie

Das Max-Planck-Institut für Radioastronomie in Bonn hat Spuren in der irdischen Landschaft hinterlassen: eine riesige weiße Schüssel, die sich bei Effelsberg in der Eifel in den Himmel erhebt – das 100-Meter-Teleskop. Wenn die Wissenschaftler dort oder an anderen Antennen weltweit nach den Sternen greifen, muss das Wetter nicht unbedingt klar sein, Radiostrahlen durchdringen auch Wolken. In diesem für das menschliche Auge unsichtbaren spektralen Band betrachten die Forscher junge stellare Objekte ebenso wie altersschwache Sterne, Moleküle im interstellaren Medium ebenso wie ferne Radiogalaxien, das Zentrum der Milchstraße oder Magnetfelder sowie Staub und Gas in kosmologischen Entfernungen. Und weil für all dies ein Teleskop allein oft nicht ausreicht, arbeiten die Bonner Radioastronomen mit der sogenannten Interferometrie, indem sie mehrere über den Globus verteilte Antennen zu einem „Riesenauge“ zusammenschalten.
Relativitätstheorie: Die Schwerkraft beeinflusst alle Objekte mit der gleichen Beschleunigung

MPI für Radioastronomie

https://www.mpg.de/150325/radioastronomie?filter=mpi_news

Das Max-Planck-Institut für Radioastronomie in Bonn hat Spuren in der irdischen Landschaft hinterlassen: eine riesige weiße Schüssel, die sich bei Effelsberg in der Eifel in den Himmel erhebt – das 100-Meter-Teleskop. Wenn die Wissenschaftler dort oder an anderen Antennen weltweit nach den Sternen greifen, muss das Wetter nicht unbedingt klar sein, Radiostrahlen durchdringen auch Wolken. In diesem für das menschliche Auge unsichtbaren spektralen Band betrachten die Forscher junge stellare Objekte ebenso wie altersschwache Sterne, Moleküle im interstellaren Medium ebenso wie ferne Radiogalaxien, das Zentrum der Milchstraße oder Magnetfelder sowie Staub und Gas in kosmologischen Entfernungen. Und weil für all dies ein Teleskop allein oft nicht ausreicht, arbeiten die Bonner Radioastronomen mit der sogenannten Interferometrie, indem sie mehrere über den Globus verteilte Antennen zu einem „Riesenauge“ zusammenschalten.
Relativitätstheorie: Die Schwerkraft beeinflusst alle Objekte mit der gleichen Beschleunigung

Geschichte der Erdsystemforschung

https://www.mpg.de/20573109/erdsystemforschung

Klimakrise, Artensterben, Ozonabbau – ökologische Fehlentwicklungen bedrohen das Leben auf der Erde, wie wir es kennen, und damit auch die gesellschaftliche Stabilität. Der Gefahr lässt sich, wie im Fall des Ozonlochs, nur begegnen, wenn die Zusammenhänge durch und durch verstanden sind. Das ist das Ziel des Erdsystemclusters in der Max-Planck-Gesellschaft. An seiner Entstehung haben die beiden späteren Nobelpreisträger Paul J. Crutzen und Klaus Hasselmann maßgeblich mitgewirkt.
Damit verknüpft soll das Institut sich auch mit der Frage nach der „Großen Beschleunigung

MPI für Radioastronomie

https://www.mpg.de/150325/radioastronomie?filter=leitung

Das Max-Planck-Institut für Radioastronomie in Bonn hat Spuren in der irdischen Landschaft hinterlassen: eine riesige weiße Schüssel, die sich bei Effelsberg in der Eifel in den Himmel erhebt – das 100-Meter-Teleskop. Wenn die Wissenschaftler dort oder an anderen Antennen weltweit nach den Sternen greifen, muss das Wetter nicht unbedingt klar sein, Radiostrahlen durchdringen auch Wolken. In diesem für das menschliche Auge unsichtbaren spektralen Band betrachten die Forscher junge stellare Objekte ebenso wie altersschwache Sterne, Moleküle im interstellaren Medium ebenso wie ferne Radiogalaxien, das Zentrum der Milchstraße oder Magnetfelder sowie Staub und Gas in kosmologischen Entfernungen. Und weil für all dies ein Teleskop allein oft nicht ausreicht, arbeiten die Bonner Radioastronomen mit der sogenannten Interferometrie, indem sie mehrere über den Globus verteilte Antennen zu einem „Riesenauge“ zusammenschalten.
Relativitätstheorie: Die Schwerkraft beeinflusst alle Objekte mit der gleichen Beschleunigung

Zoom ins Herz einer Radiogalaxie

https://www.mpg.de/11650136/mpifr_jb_2017

Die Entstehung relativistischer Jets in aktiven Galaxien ist ein immer noch nicht vollständig verstandener physikalischer Prozess. Entscheidend für die Überprüfung theoretischer Modelle ist die Beobachtung von Strahlung aus der unmittelbaren Umgebung des zentralen Schwarzen Lochs. Dazu wurde die Galaxie Cygnus A mit weltweit vernetzten Radioteleksopen bei Millimeterwellenlängen beobachtet und damit ein hochaufgelöstes Bild des Jet-Fußpunkts erzielt. Die Analyse von Kinematik und interner Struktur zeigen, dass es sich bei dem Jet um einen durch Magnetfelder beschleunigten Scheibenwind handelt.
Das ermöglicht die Untersuchung physikalischer Prozesse von Entstehung, Beschleunigung