Dein Suchergebnis zum Thema: Nase

A light switch for fast electronics | Max-Planck-Gesellschaft

https://www.mpg.de/6694490/light-frequencies-electronics

Ultra-short, intense laser pulses serve as a switch, transforming fused silica from an insulator to a conductor and back within a few femtoseconds. A research team lead by F. Krausz at the Max Planck Institute of Quantum Optics have demonstrated this rapid switching of a dielectric, which is of interest for high-clock-speed electronics, using femtosecond pulses, and observed the switching using attosecond pulses.
© Thorsten Naeser, LMU A nanometric thin silica-glass

Quantenelektrodynamik und die Größe des Protons | Max-Planck-Gesellschaft

https://www.mpg.de/12688674/mpq_jb_2018

Durch genaue Messungen am Wasserstoffatom und dem Vergleich mit den theoretischen Vorhersagen im Rahmen der Quantenelektrodynamik lässt sich der Radius des Protons am genauesten bestimmen. Neue Forschungsarbeiten am MPQ zeigen, dass Diskrepanzen in der auf diese Weise ermittelten Werte nicht auf unbekannte physikalische Effekte, sondern wohl auf Messfehler in früheren Daten zurückgehen.
© Thorsten Naeser / MPQ Abb. 1: Lothar Maisenbacher

Quantenelektrodynamik und die Größe des Protons | Max-Planck-Gesellschaft

https://www.mpg.de/12688674/mpq_jb_2018?c=2191

Durch genaue Messungen am Wasserstoffatom und dem Vergleich mit den theoretischen Vorhersagen im Rahmen der Quantenelektrodynamik lässt sich der Radius des Protons am genauesten bestimmen. Neue Forschungsarbeiten am MPQ zeigen, dass Diskrepanzen in der auf diese Weise ermittelten Werte nicht auf unbekannte physikalische Effekte, sondern wohl auf Messfehler in früheren Daten zurückgehen.
© Thorsten Naeser / MPQ Abb. 1: Lothar Maisenbacher

Simple diagnostics for common diseases | Max-Planck-Gesellschaft

https://www.mpg.de/22471897/simple-diagnostics-for-common-diseases

Diagnosing common diseases like diabetes, high blood lipid levels, metabolic disorders, high blood pressure, and metabolic syndrome is set to become easier with infrared fingerprinting and machine learning. This innovative diagnostic method was developed by a team led by Mihaela Žigman from the Max Planck Institute of Quantum Optics.
© Thorsten Naeser One sample, many diagnoses: the

Metal tip spouts electrons with an attosecond beat | Max-Planck-Gesellschaft

https://www.mpg.de/4367452/electrons_attosecond_beat

Electronics could possibly operate with a beat of a few tens of attoseconds in the future. Researchers at the Max Planck Institute of Quantum Optics in Garching near Munich have controlled electrons which gushed from a metal tip a few nanometres across with an accuracy of 80 attoseconds. An attosecond is only a billionth part of a billionth of a second – in this time, light can only travel a distance roughly equivalent to the diameter of an atom.
© Thorsten Naeser/MPI of Quantum Optics A metal