Kosmisches Feuer und Eis https://www.mpg.de/522713/pressemitteilung20061214
Staub aus dem Kometen Wild 2 liefert überraschende Resultate
dass der Anteil des Sternenstaubs nicht höher zu sein scheint als in primitiven Meteoriten
Staub aus dem Kometen Wild 2 liefert überraschende Resultate
dass der Anteil des Sternenstaubs nicht höher zu sein scheint als in primitiven Meteoriten
Danger looms from out of space: asteroids and comets are a threat to our planet. The history of Earth has always been punctuated by cosmic catastrophes. Several studies have claimed to have found periodic variations, with the probability of giant impacts increasing and decreasing in a regular pattern. Now a new analysis by Coryn Bailer-Jones from the Max Planck Institute for Astronomy (MPIA) shows those simple periodic patterns to be statistical artifacts. His results indicate either that the Earth is as likely to suffer a major impact now as it was in the past, or that there has been a slight increase impact rate events over the past 250 million years
This crater was formed around 50,000 years ago by the impact of a nickel-iron meteorite
Chemistry (Materials and Technology)
May 31, 2023 Astronomy Astrophysics Chemistry (M&T) Solar System How iron in meteorites
Chemistry (Materials and Technology)
May 31, 2023 Astronomy Astrophysics Chemistry (M&T) Solar System How iron in meteorites
Der Name beschreibt das Forschungsfeld präzise und selbsterklärend: Max-Planck-Institut für Sonnensystemforschung. Die kosmische Nachbarschaft der Erde also haben die Wissenschaftler in Katlenburg-Lindau im Fokus – die Sonne, die Planeten und ihre Monde sowie diverse kleine Körper. So blicken sie ins Herz des Sterns, von dem wir leben, untersuchen die Gashülle, das solare Magnetfeld oder die energiereichen Teilchen, die unsere Sonne in den Weltraum ausstößt. Die Oberflächen der Planeten und ihre unterschiedlichen „Sphären“ – Atmosphären, Ionosphären und Magnetosphären –, die Ringe und Trabanten sowie Kometen und Planetoiden sind weitere Themen für physikalische Modelle und numerische Simulationen. Und weil die Objekte nicht astronomisch weit entfernt sind, begeben sich die Max-Planck-Forscher gern auf Erkundungstour vor Ort – zwar nicht selbst, sondern mittels internationaler Raum- und Landesonden, für die sie Instrumente und Detektoren entwickeln und bauen.
Drążkowska vom Göttinger Max-Planck-Institut für Sonnensystemforschung anhand von Meteoriten
Chemistry (Materials and Technology)
May 31, 2023 Astronomy Astrophysics Chemistry (M&T) Solar System How iron in meteorites
Chemistry (Materials and Technology)
May 31, 2023 Astronomy Astrophysics Chemistry (M&T) Solar System How iron in meteorites
Der Name beschreibt das Forschungsfeld präzise und selbsterklärend: Max-Planck-Institut für Sonnensystemforschung. Die kosmische Nachbarschaft der Erde also haben die Wissenschaftler in Katlenburg-Lindau im Fokus – die Sonne, die Planeten und ihre Monde sowie diverse kleine Körper. So blicken sie ins Herz des Sterns, von dem wir leben, untersuchen die Gashülle, das solare Magnetfeld oder die energiereichen Teilchen, die unsere Sonne in den Weltraum ausstößt. Die Oberflächen der Planeten und ihre unterschiedlichen „Sphären“ – Atmosphären, Ionosphären und Magnetosphären –, die Ringe und Trabanten sowie Kometen und Planetoiden sind weitere Themen für physikalische Modelle und numerische Simulationen. Und weil die Objekte nicht astronomisch weit entfernt sind, begeben sich die Max-Planck-Forscher gern auf Erkundungstour vor Ort – zwar nicht selbst, sondern mittels internationaler Raum- und Landesonden, für die sie Instrumente und Detektoren entwickeln und bauen.
Drążkowska vom Göttinger Max-Planck-Institut für Sonnensystemforschung anhand von Meteoriten
Der Name beschreibt das Forschungsfeld präzise und selbsterklärend: Max-Planck-Institut für Sonnensystemforschung. Die kosmische Nachbarschaft der Erde also haben die Wissenschaftler in Katlenburg-Lindau im Fokus – die Sonne, die Planeten und ihre Monde sowie diverse kleine Körper. So blicken sie ins Herz des Sterns, von dem wir leben, untersuchen die Gashülle, das solare Magnetfeld oder die energiereichen Teilchen, die unsere Sonne in den Weltraum ausstößt. Die Oberflächen der Planeten und ihre unterschiedlichen „Sphären“ – Atmosphären, Ionosphären und Magnetosphären –, die Ringe und Trabanten sowie Kometen und Planetoiden sind weitere Themen für physikalische Modelle und numerische Simulationen. Und weil die Objekte nicht astronomisch weit entfernt sind, begeben sich die Max-Planck-Forscher gern auf Erkundungstour vor Ort – zwar nicht selbst, sondern mittels internationaler Raum- und Landesonden, für die sie Instrumente und Detektoren entwickeln und bauen.
Drążkowska vom Göttinger Max-Planck-Institut für Sonnensystemforschung anhand von Meteoriten
Danger looms from out of space: asteroids and comets are a threat to our planet. The history of Earth has always been punctuated by cosmic catastrophes. Several studies have claimed to have found periodic variations, with the probability of giant impacts increasing and decreasing in a regular pattern. Now a new analysis by Coryn Bailer-Jones from the Max Planck Institute for Astronomy (MPIA) shows those simple periodic patterns to be statistical artifacts. His results indicate either that the Earth is as likely to suffer a major impact now as it was in the past, or that there has been a slight increase impact rate events over the past 250 million years
This crater was formed around 50,000 years ago by the impact of a nickel-iron meteorite